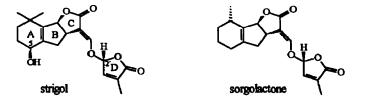


Tetrahedron Letters, Vol. 35, No. 28, pp. 4973-4976, 1994 Elsevier Science Ltd Printed in Great Britain 0040-4039/94 \$7.00+0.00

0040-4039(94)00957-0


Strigol Synthetic Studies The First Synthetic Approach that Allows Control of C-2' Configuration

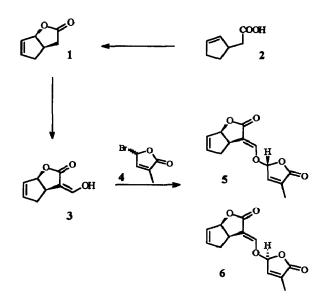
Katja Frischmuth, Andreas Marx, Tanja Petrowitsch, Ulrich Wagner, Klaus Koerner, Silke Zimmermann, Heike Meuer, William S.Sheldrick, and Peter Welzel^{*}

Fakultät für Chemie der Ruhr-Universität, 44780 Bochum (Germany)

Abstract - A phenylthio group has been used to control stereoselective bond formation at C-2'.

Germination of seeds of root parasitic flowering plants of the genera *Striga*, *Alectra* (Scrophulariaceae), and *Orobanche* (Orobanchaceae) is stimulated by substances from their host plants. Prominent examples are strigol and sorgolactone.¹

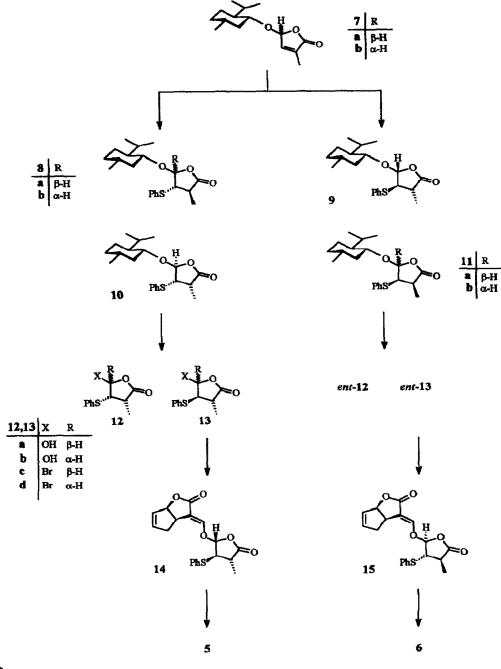
Scheme 1


Very specific interactions between the stimulant and the binding site(s) at the seed seem to exist. For *Orobanche crenata* seeds it has been found that the absolute configuration at C-2' is of major importance as far as seed germination potency is concerned.¹

Non-racemic samples of strigol, its stereoisomers, and of structural analogues have been obtained both by resolution^{2,3,4,5} and by asymmetric synthesis.^{6,7} However, for one stereochemical problem no solution has previously been found, namely control of the configuration at C-2'. In all cases reported so far, a synthetic intermediate of type 1 was converted into a hydroxymethylene derivative 3 which was in turn coupled with racemic, configurationally unstable bromo lactone 4 to give a 1:1-mixture of 2'-epimers such as 5 and 6.^{3,4,7,8,9,10}

It is the purpose of this publication to discuss preliminary results which indicate that this difficulty can be mastered. The stereohomogeneous strigol analogue GR 28 (5) and its 2'-epimer 6 have been obtained stereoselectively. The precursors and reference samples were prepared starting from rac-2 which was cyclized with cat. $Pd(OAc)_2^{11}$ to provide rac-1.¹² Resolution of rac-1 was achieved by cellulose triacetate chromatography. 1¹³ was then converted to 5¹³ and 6¹³ via 3. Similarly, *ent-5* and *ent-6* were obtained from *ent-1*. The relative configuration at C-2' in 5 and 6 rests on X-ray analysis.¹² The absolute configuration was

determined by means of circular dichroism. The CD spectrum of 5 is almost superimposable to that of strigol¹² and that of 6 is practically identical with that of 2'-epistrigol.¹²


We reasoned that control at C-2'should be possible making use of Feringa's work.¹⁴ Thus, 7a and 7b were obtained and separated as described.¹⁵ Treatment of 7a with thiophenol yielded 9 and 11a. In later experiments it turned out to be more convenient to treat the mixture of 7a and 7b with thiophenol and separate adducts 8b, 10, 9, and 11a chromatographically. Configurational assignment of 11a and 9 was achieved by X-ray analysis.¹⁶ As already published by Feringa,¹⁴ thiophenol adds trans to the menthyloxy

Scheme 2

group of 7a. Protonation of the intermediate anion is then almost stereo-random, addition of the proton opposite to the phenylthio group being slightly preferred. The determination of the configuration of these compounds turned out to be quite complicated since they adopt different conformations in solution and in the crystalline state. According to the X-ray analysis¹⁶ 9 adopts a ⁴E-conformation in the crystal. From the torsional angles as calculated from the X-ray structure, (3'-H)C-3' - C-4'(4'-H) = -98.4° and (4'-H)C-4' -C-5'(5'- H) = 99.4°, one would expect narrow multiplets for all ring protons in the ¹H NMR spectrum. This is, however, not the case: $J_{4,5}$ = 4.0 Hz and $J_{3,4}$ = 7.5 Hz are observed. Obviously, in solution the 5membered ring adopts a twist conformation with the large substituents in pseudo-equatorial position. Similar results have been obtained for 11a. In 9 a NOE between 3'-H and 5'-H demonstrates the cis relation between these protons. In 11a this NOE signal is lacking. The configurations as depicted in 10 and 8b were assigned by comparison of the ¹H NMR spectra with those of 9 and 11a, again a NOE between 3'-H and 5'-H proved these two protons to be cis in **8b**. The auxiliary menthyl group was removed from 10 and 11a, respectively, by acid hydrolysis. In each experiment a mixture of compounds was formed which contained more components than expected. We were unable to separate these mixtures. However, when the hydrolysis products of 11a were treated with (-)-menthol in the presence of p-toluenesulfonic acid, four compounds were formed. Two of them could be readily identified to be 11a and 8b. According to spectral data the other compounds were 11b and 8a. The formation of 8a and 8b can be explained assuming the hydrolysis products ent-12a and ent-12b to

be in equilibrium with the ring opened aldehyde, the α -position of which is of course stereo-labile. Similary, from 10 the hydrolysis products 12a/12b and 13a/13b were formed. The observed stereoisomerization at C-3'

Scheme 3

has, of course, to be avoided, if this approach were to become a useful way to stereohomogeneous strigoltype compounds, as the phenolthio group is intended to stereodirect bond formation at C-2'.¹⁷

In order to probe the stereodirecting properties of the C-3'substitutent, the mixture containing 12a/12b and 13a/13b was treated with CBr₄/PPh₃¹⁸ Three bromo derivatives could be isolated. The most readily isolated compound which also turned out to be the most stable one, was assigned structure 13d on the basis of H.H. coupling constants ($J_{3,4}$ = 12.0 Hz and $J_{4,5}$ = 4.6 Hz, for comparison, see¹⁹). This compound (note the inverted configuration at C-3' when compared with 10) was coupled with non-racemic 3 in the presence of silver carbonate. However, this promotor turned out to be quite unsuitable as far as rate and yield of the reaction were concerned. A very slow reaction occurred and a mixture of compounds was formed. After 14d 14 was isolated in 16% yield alongside with a rearrangement product.²⁰ Oxidation of 14 with mCPBA followed by elimination in the presence of Et₃N yielded stereohomogeneous 5 in 79% (based on 14).

Because of the difficulties experienced with Ag₂CO₃ recourse was made to Ag silicate.²¹ Treatment of em-13c with 3 in the presence of Ag silicate yielded coupling product 15²² (30% after 50h). Again, oxidation and elimination proceeded smoothly to furnish 6. The properties of both 5 and 6 (including α) values) were identical with those of reference samples prepared as summarized in Scheme 2.

In conclusion, for the first time it was possible to control the configuration at C-2' in strigol type compounds although the methods certainly needs improvement. Work along theses lines including a cycloaddition/ cycloreversion variant is in progress.

Acknowledgements - We wish to thank W.Riemer and M.Gartmann for the NMR spectra. Financial support by the Deutsche Forschungsgemeinschaft, the Wilhelm und Günter Esser-Stiftung, and the Fonds der Chemischen Industrie is kindly acknowledged.

References and Notes

- 1 Bergmann, C.; Wegmann, K.; Frischmuth, K.; Samson, E.; Kranz, A.; Weigelt, D.; Koll, P.; Welzel, P. J.Plant Physiol., 1993, 142, 338-342, and references therein.
- 2
- 3 4
- Heather, J.B.; Mittal, R.S.D.; Sih, C.J. J.Am.Chem.Soc., 1976, 98, 3661 3669. Brooks, D.W.; Bevinakatti, H.S.; Powell, D.R. J.Org.Chem., 1985, 50, 3779 3781. Samson, E.; Frischmuth, K.; Berlage, U.; Heinz, U.; Hobert, K.; Welzel, P. Tetrahedron, 1991, 47, 1411 - 1416,
- Hauck, C.; Schildknecht, H. J.Plant Physiol., 1990, 136, 126 128. Berlage, U.; Schmidt, J.; Milkova, Z.; Welzel, P. Tetrahedron Lett., 1987, 28, 3095 3098. Mangnus, E.M.; Zwanenburg, B. J.Agric.Food Chem., 1992, 40, 697 700. 6
- 7
- g
- Heather, J.B.; Mittal, R.S.D.; Sih, C.J. J.Am. Chem. Soc., 1974, 96, 1976 1977. Mangnus, E.M.; van Vliet, L.A.; Vandenput, D.A.L.; Zwanenburg, B. J.Agric.Food Chem., 1992, 40, 9 1222 - 1229 10
- Mangnus, E.M.; Dommerholt, F.J.; de Jong, R.L.P.; Zwanenburg, B. J.Agric. Food Chem., 1992, 40, 1230 - 1235 11
- Larock, R.C.; Hightower, T.R. J.Org. Chem., 1993, 58, 529 530. Frischmuth, K.; Wagner, U.; Samson, E.; Weigelt, D.; Koll, P.; Meuer, H.; Sheldrick, W.S.; Welzel, P. Tetrahedron: Asymmetry 1993, 4, 351-360. 12
- 12
- Welzel, P. Tetrahedron: Asymmetry 1993, 4, 351-360.
 [α]_D values: 1: -131.3 (c 1.0, CH₂Cl₂), 5: 130.9 (c 0.6, CHCl₃), 6: 28.6 (c 0.6, CHCl₃).
 Review: Feringa, B.L.; de Lange, B.; Jansen, J.F.G.A.; de Jong, J.C.; Lubben, M.; Faber, W.; Schudde, E.P. Pure Appl. Chem., 1992, 64, 1865 1871.
 Feringa, B.L., de Jong, J.C. J.Org. Chem., 1988, 53, 1125 1127.
 The results will be detailed in a forthcoming publication.
 Jones, D.K., Liotta, D.C., Tetrahedron Lett., 1993, 34, 7209 7212, and references therein.
 Hooz, J., Gilani, S.S.H. Can.J.Chem., 1968, 46, 86 87, and references cited therein.
 Savostianoff, D.; Pfau, M.C. Bull Soc.Chim.Fr., 1967, 4162 4171.
 The structure of this compound will be described in the full paper.
 Paulsen, H: Lockhoff, O. Chem Ref. 1981, 104, 3102 3114 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- Paulsen, H; Lockhoff, O. Chem. Ber., 1981, 104, 3102 3114. 22
- Again accompanied by the rearrangement product.

(Received in Germany 22 April 1994; accepted 16 May 1994)